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_STR_CF

Probabilistio composite micro_echanics netI_ods are developed that

simulate expected tw_ertainties in tmidireotional fiber composite

properties. These methods are in the form of computational procedures

using Monte Carlo simulation. The variables in _ir_h ta_oertainties are

accounted for ir_lude constituent and void volume ratios, constituent

elastic properties and strengths, and fiber misaligrment, il

graphite/epoxy cu_idirectional composite Iply) is studied to demonstrate

fiber composite material property v-a_iations ir_luc_d by random changes

expected at tbe material micro level. Regression results are presented

to show the relative correlation between predictor and response

variables in the study. These computational _ures make possible a

formal description of anticipated random processes at the intraply

level, and the related effects of these on composite properties.
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_l. Background

di,_rse requirements of recent engineering ai_lications have

motivated designers to explore speciali_._d structural and material

system. Ceramic materials, for example, have several attrac_tive

str_t_al properties, s_h as their high stiffness/_eight ratios, and

low variation of stiffness and strength over wide ranges of

environmental conditions. II significant disadvantage inherent to

brittle structural materials is their vulnerability to failure due to

cracks propagating from £1a_s. _ increased probability of a flaw

ocx:o_ring in a material as the _Itme increases leads to bulk strengths

_ich are a fraction of the theoretical strength o£ the material.

size effect on material strength (I_f. I) can be explained by the

"'weakest link'" concept. Griffith ( Ref. 2) reasoned that very small

solids, £c_r example wires or fibers, might be expected to be stronger

than large ones, due to the additional restriotion on the size of the

flaws. In the limit, a single line of molecules must possess the

theoretical molecular tensile strength of a material. 1_ cemseq_r_e of
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the size e£fect on strength was the development of fiber composite

materials _hich consist o£ thin, strong fibers bound together by a

ductile matrix. The advantages o£ fine, strong fibers can explain the

current trend toward increased use o£ fiber composite materials in

demanding aerospace applications.

Properties o£ a composite lam._inate depe__d on t_he properties of the

constituent materials, their distribution, and orientation. Laminates

are composed o£ layers of m_idirectionally reinforced plies (laminae).

The lamina is typically considered the basic m_it o£ material in a

composite structural analysis, _hich requires knowledge of the material

properties o£ each individual lamina ar_ its geonetric orientation.

branch of composite mechanics that predicts ply material properties

based on the properties, concentration, and orientation of its

constituents is known as composite micronechanics, and £requently

incorporates the traditional Mechanics o£ Materials asstmptions. The

desired laminate is created by stacking of plies in specific directions.

The integration of ply properties to yield laminate properties is called

laminate theory. Laminate v-_riables such as ply orientation and

stacking sequence can be tailored to yield a laminate with the desired

material properties. Thus, the laminated composite is a suitable

material for component design.

llnalysis o£ £iber composite structures is cm-rently per£ormed using

a variety o£ computer codes. From the original codes based on classical

micronechanics and laminate theory, recent codes (Ref. 3,4) have been

developed _hich incorporate the ct_rrent state o£ the art. Complete
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mechanical, tberm_l, and hyural properties are calculated, arxi can be

used to compute response. _dvanced £ailure criteria are used to

calculate composite strengths. Envirormental effects are also

quantified. The usefulness o£ these codes has been demonstrated by

comparison with experimental and finite element results (Ref. 5,6).

analytical capability o£ man F codes is limited by the

deterministic nattn_e of the computations. Speoifically, fixed values

for constituent material properties, fabrication process variables {i.e.

constituent volume ratios) arxI inter_al geometry must be used as input.

Ho_._uer, random variations in these parameters are r_t,onl7 expected,

but easily observed experimentally. (See Fig. I)

The analysis of composite structt_es requires reliable predictive

models Eor material properties and strengths. However, the prediction

efforts have been complicated by inherent scatter in experimental data.

Since uncertainties in the constituent properties, fabrication

variables, and internal geonetry _ould lead to ta_certainties in the

measured composite properties, the question arises:

How much o£ the "'statistical" scatter of experimentally observed

composite properties can be explained by reasonable statistical

distribution o£ input parameters in composite miaro_ics

laminate theory predictive models?

The increasing use o£ probabilistic methods in structural mL__J_anics has

been shown to provide a more realistic depiction o£ str_x_ttn-al response

due to load variations. (Ref. 9) The recognition that material

parameters are characterized by a spectra of values ( that is, are
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statistical in nature ) rather than by a tu_ique set of _alues, points to

probabilistic netbods as a logical analysis ap_.
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Fig. 1- Photomicrograph of Graphite/Epoxy cross section
showing variation in fiber content. (Ref. 19)



B. Purpose

The aim o£ this thesis is to develop • co.putatioral o_pability to

simulate the probabilistio variations in the _-chani_l behavior o£

m_idirectional fiber composites, The llbnte Carlo mthod is used to

simulate a variety of random processes, to quantify fiber coq_osite

mterial variations induced by random changes in composite fiber

alignment, constituent properties, and fabrication process variables.

This random process description is an attempt to rare acctrately predict

the behavior of manufactcred mterials, _hich inherentlF include these

random uariations. The characterization of fiber reinforced composites

throtmjh sin_lation of local nonuniformities provides an economical

alternati_ to experimentation to neast=-e material properties.
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C. Formulation of the Model

The model oommonly used in characterizing fiber composites is based

on the caloulation of properties o£ the basic Lmit o£ an _tlsotropic

ply. The la_zp geometry is then used in laminate equations to calculate

composite properites (See Figs. 2a, 2b). In this work, bo_e_, the

basic trait is taken as the sub-ply, _ich consists of only one

fiber-m_trix level in the n_terial. Micronechanics theory is used to

calculate the properties of the assumed orthotropic sub-ply, each with

randomly distribttted fabrication _rariables and mterial properties.

Distributed fiber directions, due to possible misalignnent within the

ply, are then used in the laminate equations to calculate ply

properties. This substructuring of the composite ply represents a no_l

attempt at characterization of fiber composite material properties based

on probabilistically distributed constituent properties, individual

fiber misalignnent, and fabrication process _-ariables (See Figs. 3a,3b).

This £orm-lation is particularly _ell suited to the probabilistio

description of fiber composite mterial properties. Since the

mioronechanios and laminate equations can be used to calculate ply

properties at any number of points in a ply, a tractable finite elemant

structural analysis based only on simple distriln_rtional assunptions for

physical parameter variations can be perforned. This model supplies a

rational procedure for composite material property assessment, because

it treats the mterial as the result of a series of random processes

_hich ooour at the intraply level.
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(a) orthotroplc ply (b) lamlnate

Fig. 2-Conventlonal Hodel

ft be r

mtsal Igr_nent

(a) subply (b) ply

Ftg. 3- Substructure Yodel
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D. Method of Invest igat ion

I. Brief Description of IClql_

The Integrated Composite _alvzer (ICi_) is a computer program for

oomprebensive linear analysis of multilevel fiber composite $trocttu_es.

The program contains the essential £eattu_es required to effectively

design strt_ttn_al components made from fiber composites. It r_w

represents the culmination of r_..search oondunted since the early 197_'s,

at the National Reronautics and Space J_dministration (1%4S_I) Lewis

Researoh Center (LeRC), to develop and code reliable oo.,posite mechanios

theories. This user friendly, publicly available code incorporates

theories for

I. con___ntional laminate analysis

2. intraply and interply hybrid composites

3. hTgral, thermal, ,echanical properties and response

4. ply stress-strain in£1uence coefficients

5. microstresses and miorostress infltenoe coefficients

6. stress concentration factors around a ciz-cular hole

7. predictions of delamination locations around a circular hole

8. Poisson's ratio mismatch details near a straight free edge

9. free edge interlaminar stresses

10. laminate failure stresses

II. normal and transverse shear stresses

12. explicit specification o£ matrix-rich interply layers

13. finite element material cards for N_-q1_qN, MQRC

Ll detailed description of IC_ can be found in Reference (3). The

ICl_I code and documentation are a,milable through COSMIC, the Computer

Software l_anagemant and Information Center, Suite 112, Barrow Hall,

i_thens C_, 30602.



2. S_mery of Variables

variables studied in this turk can be separated into tm

categories. The independent _riables to be simulated using razxlom

sampling consist of the following (see Fig. 4a for fiber coordinate

system) :

C1_oom_try:

fiber orientation angle

Fabrication uariables:

fiber uoltme ratio

void volune ratio

Fiber propert ies

longitudinal elastio modulus

transverse elastic m_dulus

shear modulus, I-2 plane

shear modulus, 2-3 plane

fiber tensile strength

fiber compressive strength

Matrix properties

elastic modulus

matrix tensile strength

matrix compressive strength

matrix shear strength

( Era)

(E -P2)
( 12)
( -P23)
(srrr)

(star)
(SMPC)
(S S,s)

The dependent uariables to be calculated using IC/_I consist of the

following ply properties, ,easuredabo_rt the mterial axes (see Fig.

4b):

normJl modulus in 1-1 direction (ECll)

normal modulus in 2-2 direction (I_22)

shear nodulus in 1-2 plane (EEl2)
Poisson's ratio £or strains in 2 direction induced

by stresses in I direction ()£;C12)
Poisson's ratio for strains in 1 direction induced

by stresses in 2 direction ()ti;C21)

Coefficients of thermal expansion

in 1-1 direction (CTEII)

in 2-2 direction (CTE22)

coupling coefficient (CTE12)
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(a) fiber (b) material

F|g. 4- Coordinate Systems

Fig. S- Order of leAN input data cards
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PIF strengths in material directions

iongl tudLna/ tensL le I_ Ilongitudinal compressi_

trans_=r_e tensile I_ Itransverse OOml_r_ssi_

in-plane shear (SCXYS)

The descriptions above should be consulted periodically for the

definitions of variables that henceforth will he referred to

symbolically.
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3.Monte Carlo PketlxxIs

Complicated stochastic processes can be simulated by a variety of

numerical methods generally referred to as l_bnte Carlo methods (llef. 8).

The term refers to that branch of experimental mathemtios concerned

with experiments on random ntmbers. Since the advent of high speed

computers, they ha_e £ourxl extensive use in most fields of science and

engineering, in analyzing many physical processes of a statistical

nature, or _here direct experimentation is not feasible. In general,

they can be economically used to achieve a level of pr_ision between 90

and 95 percent.

A Monte Carlo experiment refers to the procedure of randomly

assigning a value to an independent random variable in a chosen model,

and observing the dependent variable at the conclusion of the process

beir_ modeled. Jl Mbnte Carlo procedure is composed of n such

independent experiments. Llhen n is sufficiently large, the observations

will yield, by virtue of the laws o£ large numbers, a statistically

meaningful description of the physical problem.

The form of Mbnte Carlo used in this study is as follows:

1. Define the system m0del by assuming

a. model regression function

b. method o£ error incorporation

c. probability distributions of all errors (for all independent

variables)

d. any equations used to model the phenonerm of interest

2. Use the comptrter and random sampling techniques to select

values of the independent variables.

3. Calculate dependent (output) variables using the prescribed
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41

5.

equat ions.

Estimate regression parameters for the assu_-d noclel.

Replicate the experimnt, each time with a new set o£ irq)ut

values.

Use appropriate statistical ,ethods to calculate properties of

the distribtrtion of pa_aneter estimates.
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E. Brief Summary of Results

A ply made £rom the l_-Graphite /INES epo_/ oomposite system is

studied. The eonte carlo scheme is used to generate a rnmtmr of

response results, qhich are analyzed in graphical and numerical form, to

supply a random process description of composite ply elastic constants,

therml expansion coefficients, and strengths. Histogram and

distribution plots of results for ass_ narrow and wide _L_iations in

input properties are compared with a deterministic base case for an

aligned ply. The figures demonstrate the range of ualt_s that response

_ariables assume for the example data under consideration.

Confidence intervals are calculated for response u-ariables in

subsecFent samples, which are normalized with respect to an appropriate

independent _rariable, to yield plots o£ normalized response as a

function of fiber _lume ratio, for various values of distribution

parameters £or the related independent _rariable. These plots

demonstrate the sensitivity of ply properties to randoml7 selected

tmcertainties in constituent and fabrication variables.

Several multiple linear regression models _ere calculated for

response _u-iables. The relati_ oorrelation of predictor (independent)

variables _rith response is studied £or all output properties considered.

Varyinq legels of significance _ere aohie_Jed in the regression

equations, due to the dif£erences in complexity of response ,rariables.

Elastic oonstants can be described adequatel7 with simple regressor

£tmctions, and ge_erall y explain between 80 and 99 Percent of the

observed response variations about a mean. The regression models
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studied for strength, althotqh achieving better reliability with higher

order regressor f_notions, ¢kemonstrate sm:h low signifioanoe as to be

practicallF useless for predictive purposes. This is not an tmexpected

result, because o£ the cowplex nattn-e o£ strength behavior in composite

materials.



CI_ II

I'_ OF CJ:III_E_..QTION

0. O_erall plan

1. Input structure for ICQI4

The input data for a typical execution of the available IC_J_

program consists o£ (see Fig 5)

1. header oard

2. control cards

3. ply data cards

4. material system car_s
5. load cards

For repeated use of the ICl_ program, input data tiles must be

created and used one at a time. Each successi_ run o£ the master

program (of _hich IC_nJ4 is nlde a subroutine) _rite$ the input tile from

user-supplied parameters and calls ICJIN. The ply data cards contain

randomly generated fiber orientation arcjle values. The material system

cards contain randomly generated valces for tiber and void voltme

rat los.

17
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2. Constituent Property Variations

Eich sucoessiw exeoution of IC/_N uses • distinot set of .sterial

properties for fiber and mtrix. The random nun/_ generation is

perfornL-d with user-supplied paramters _hioh are stored in a separate

file. The options of usirEj either generated properties or using the

values contained in the resident data bank are available. /_ny subset of

the parameters described nay be generated or held constant with proper

specification o£ the Booleans _hich control the input to the 1C/_1

program. (see Figs. 6,7)
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FIBER STRENGTH VARIES; CONSTANT FIBER VOLUME RATIO OF 0.30;TAPE 003131
STDATA 15 1 15 T

T 50 T F T T
F 000.0 10.0 0 300 0.200 3.00 5
F
F
T
PLY

19ATCRDAS-1I?II.IS
PLOAD 10.
PLOAD 0.0
PLOAD 0.0

OPTION 0

70.00 70.00 .0 .000
AS-I_S 0.0 .57 .03

0.0 0.0 0.0
0.0 0.0
0.0

Fig. 6- Command Input

EFP1 T 0.3100E 08 0.3000E 07
EFP2 T 0.2000E 07 0.2000E 06
GFP12 T 0.2000E 07 0.2000E 06
GFP23 F O.IO00E 07 0.1000E 06
SFPT T 0._000E 06 0.1000E 02
SFPC T 0.4000E 06 0.1000E 02
EMP T 0.5000E 06 0.5000E 05
SMPT T 0.1500E 05 0.1000E 02
SMPC T 0.3500E 05 0.1000E 02
SMPS F 0.1500E 05 0.1000E 02

Flg. 7- Constltuent Variation Input. Example for AS-I Graphite

fiber and IMHS Epoxy matrlx, with wlde variations of

stlffnesses and strengths.
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3. Repeated runs

user -tlst SlX-oiFy the n_r oF IC_N runs desired in a gi,,en

sample. In this study, £i£ty (50) runs were used throughout, to take

ad,_untage of the simplification in statistics by usir_i suitably large

samples. From elementary statistics, it is kno_.an that an}, process that

is the result o£ the conbined interaction of se,,eral probabilities can

be assuned to approximate a nor_Tal distribution. For pl-_nomena that are

asstmed to approximate a nor_ml distribution, the simplest £orms £or

calculating statistics apply to suitably large samples (usually greater

than thirty). _ sanpl_ size o£ ei£ty _s c1_osen to strpply a

practicably large anDtmt o£ data, _._ithin the restrictions it,posed on

comptrcation t in_.

The data generated by repeated execution o£ the ICAN rot_.ine_-s ks

stored in a sequential access dataset, _ilere the 50 output £iles are

separated by er_ o£ £ile _rarkers. This arrar_en_nt allo_ a _ingle

Fortran unit to be used £or output throtw_hout. A si,_ple £1o_=hart o£

the data generation routines is sho_n in Fig. 8(a).

4. Data collection

The ICI%N output files are searched to locate the specific material

properties and strengths of interest in this stagy. The flo_._zhart o£

data collection routines is sho_m in Fig. 8(b). i%£ter obtaining the

sample o£ ICi%N output, the in,,estigator mey choose to scrutinize

parameters or calculate statistics aside £rom those chosen in this

study. This is likely, in light o£ the large quantity o£ data a,_ilable

and the need £or limiting the scope of this particular study to
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representative properties. The user _ld ha_ to supply additional

oode or adapt existing oocle to suit his p_poses in this c_se. The

coded nodifications to IC_ used in this study are included in J_ppendix

A.
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(a) data generation program

IMTA
WIIT l

I
CALL

i STA?IS?|CSJ

I , n.mr I I ,_,r " I I "-"ii ISllOGI_ i I ¢_lrlO(nCl I I .......
I me I I cu_ I I "_'_'_
IOZS_Zau'r_msi ! I I

(b) analysls procedures

Flg. 8- Flow chart of Probablllstlc Integrated
Compos t tes Analyzer
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B. Generation of Pseudo Random Numbers

l:m integral part of any monte carlo simulation is tl_e use o£ random

numbers having a specified distribution _hich is assuned to charaoterize

the process under study. Indeed, many statistics textbooks carry tables

of random numbers as appendices. Simulations using large samples

require n_ny repeated caloulations, each with different "'random"

numbers. Since filling of a computer nemory with a large table of

random ntmbers is wasteful, algorithms have been developed (Ref. 9) to

generate streams of random nun_ers _hene_m- needed in the process o£

caloulations. _ nunbers used are usually obtained using some £orm o£

a recursion relation, hence the sequence is termed pseudo-random.

I. Uniform Distribution

The starting point for many random hunter schemes is the uniform

random ntmber generator, _hich simulates a sample £rom the uniform

distribution. _ oontint©us random variable has a tmiform distribution

over an interval a to b ( b ) a ) if it is equally likely to take on any

value in this interval. The probability density £tmction is thus

constant over ( a,b ) and has the form

1

f(x) - b - a a _< x _< b

= 8 el_re

The probability distribution fua_ction .s, on integrating

F(x) = • x ( a

K -- a

= a_<x__b
b - a
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--1 x)b

The uni£or_ distribution is sl_n in density and distribution form in

Figs. 9a and 9b.

Lelmer (Ref. 10) proposed the oong_uential method of get.rating

pseudo random numbers oor_orming to the _iform distribution. The

reotn_renoe relation takes the form:

x i = (axi_ 1 + b ) modulo m

_/_ere the notation signifies that xi is the remainder v_en (axi_ I + b)

is divided by m. The multiplier a, increment b, and modulus m are

integers. The starting value KO must be assuned, and is known as the

"seed" o£ the generator. Generators for _hich b = • are kr_n as

multiplioative. They are called mixed _hen b is nonzero. Because

selection of the multiplier a and modulus m strongly influence the

generator, most gemrators in use are of the multiplicati_ form. /q

discussion of the choice of parameters, maximum period, and degree of

correlation of this generator is a,Tailable (Bef. II).

For a given tmiform random _r u on the interval (0, I) a random

number x having a desired distribution F(x) is often obtained by solving

the equation u = F(x) for x (Be£. 12). Since the process requires the

determination o£ the inverse distribtrtion £umction F-1 (x),its

depends on the ease of deriving the expression or some approximation.

The following sections describe the distributions used, and methods for

generating random numbers on those distributions.
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2. Norml (_ussi_) Distribution

The .ost oo.non distribution is the familiar nor._l distribution,

with the "bell shaped" density ftmction, given by

= exp
flx;/_,a') _ 2a z

-_ ( x { m, /d ( m, and o } 9

with man p and standard deviation o. The distribution ftmction is

_
exp - _ du

_ritten

which cannot be expressed in closed form analyticallybut can be

ntmerically evaluated at any valte of x.

The Box-Ebller or "'Polar" method (Bef. 13) is most commonly used

for generating random deuiates from a mean to approximate the normal

distribution. If x I and x 2 are irzleper_lent tmiformrandomu'ariables,

then

yl = a(-2 In Xl)0"5 cos 2nx 2 + F

Y2 = o(-2 In Xl)O"5 sin 2nx 2 + p

are independent random variables with the standard normal distribution

baying man _ and standard deviation o.
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3. Gamm Distribution

The gamins distribution is a t_o-paraneter distribution _hioh is

flexible in fitting • variety of random prooesses. It is a one sided

distriblrtion in that physical quantities that are limited to _mlues in

the positive range are frequently modeled by it. Its density function

is given by

-Xx k-1

F(k)

_here x_ X, k } Os and k is an integer.

parameters X and k may be interpreted as scale and shape parameters,

respecti_ly. F(k) is the well known gamin function,

_;_ k-I -Udu 'r(k) = u e

_hich is widely tabulated. The gamma distribution f_tion is gi_n by

xk I: -XuF(x) : r(k) k-1 e du

r(k,Xx)
x>_O

: r(k)

= 0 e lse_l_re

_her_ F(k,u) is the incomplete gamma fm_ction

r(k,u) = ]:
xk-I e-X_x

_hich is also widely tabulated. For integer _lues of kj

r(k) = (k-l):

and the gamma distribution is _ as the Erlar_ian distribution after

Jl. I. Erlang, _o introduced it in the theory of queues and llkrkov

prooesses.
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Gamma vaz-lates are germr'ated using the

ul,u2,u 3, ...... uk

satisfying the tmiform distribtrtionon the interval

rec_rsion relation is

Yi -

x =iF i -

i=1

I

X In ui,

I k

In • u.
t

i=1

(0,1).

_bere x is a gamma variate havir_ parameters X and k (Ref. 14).
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4. Lkeibull Distribution

The Weibull distrilnrtioa_ (Paef. 15) is most popular _dhen modeling

problems of reliability, material strength, and £atig_e. The Weibull

density ftmction is gi_n by

• _<x { % a ) _, _ ) I

_here a and _ are the shape and scale parameters, respectively. The

cumulative distribution f_tion

y = F(,,) = I - e_[-(,,/_) '_]

leads imnediately to the in_rse relationship

F -l(y) = x = - .8[ in(l-y) ]l/a

as the desired Meibull random generator _L_en y is a tmifor_m random

vat lab le.

Figures 9-12 show the abo_e distribtrtions in analytioal form.



29

,FXfzJ

I

I= I
I !
I !
I I

• b

(a) dens Ity

r_J

• b

{b) distribution

Flg. g- Uniform Dlstrib_Jtion: general form.

jrx_)

-, -3 -2 -, o I 2 _ ,

(a) density

Fxf=J

-4 -4 --2 --I 0 ! 2 3 4

(b) distribution

Flg. IO- Normal Olstrlbutlon
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Fig. 11- Gamma Distribution density functions.
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0.50
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Ftg. 12- Welbu11 Distribution function.
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C. Distribution /lssunptions

The _-Lriables chosen £or variation are those £or which reasonable

assumptions can be rode to describe their distribution. The Eiber

geometric cot--figuration with res_==ct to ply axes is assuned to £ollow a

normal distribution with mean o£ zero (degrees) and some snail standard

deuiation, to be specified. The £iber _olume ratio is assumed to be

normally distributed about some mean between _.3 and _.?. The void

voltme ratio, _hich is ideally small, is assumed to follow a gamma

distribution skewed to_1_rd zero. {Note that in the gammm distribution

used, a _ralue of zero has a probability of zero. This model is chosen

because the state o£ most present n_nu£actu_ir_ technology pr_cludes the

£abrication o£ a £iber composite c_n_pletely £r_e o£ _id.)

The properties o£ individ_l fibers and mBtrix are _raried. The

normal and shear moduli are asstmed to follow the normal distribution,

and the strengths are assumed to be Weibull distributed.

Figs. 13-27 show the results o£ random ntmber generation in each

distribution studied. The density (or histogram) and otmulati_e

distribtrtion plots are sho_n. Several _eibull and gam,m distribLrtion

simulations are sho_n, to demonstrate the e£Eects of assuned parameter

_-ariations on the distribution sampling.
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HISTOGRAM FOR

NORMAL GENERATOR
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Fig. 13- Normal Distribution Simulatlon with mean of
0.0 and standard deviation of 1.0.
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Flg. 14- Gamma Distribution Simulation
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Fig. 18- Welbull Distribution Simulation
Matrix Shear Strength
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Fig. 25- Weibull Distribution Simulation
Fiber Tensile and Compressive Strength
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Fig. 26- Weibull Distribution Simulation
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D. Use of ICRN

This section describes the essential theories and assumptions

incorporated in the ICflN program. The sywbolio notation oonventions_

formulations, and definitions are included in _ppendix B.

I. Composite Micromeohanics

The branch of composite nechanics _hich relates ply properties to

constituent properties is known as composite micromechanics. The inputs

consist not only of constituent material properties (fiber and matriK),

but geometric con£iguration and £abrication process. Output includes

ply hygral, thermal, and mechanical properties. The assumptions for

equation development are: (Re£. 16)

Io

2.

3.

4.

5.

6.

Mechanics of Materials are used to derive the equations,

allowing each property to be indi_idually identified.

The ply resists in-plane loads according to the schematic

sho_n in Fig. 4(b I.

The ply and its constituents behave in a linear elastic n_nner

to fracture (see Fig. 28).

The ply is transversely isotropic in the 2-3 plane.

The matrix is isotropic.

Complete bond exists at the fiber-matrix interface.

The direction contentions and terminology used in the ec_tions

_Lre:

it

2.

3.

4.

Properties measured along fiber direction are called

longitudinal.

Properties measured transverse to fiber direction are called

transverse.

In-plane shear is also known as intralaminar shear.

fill ply properties are defined with respect to ply material

axes (1,2131 for description and analysis.



48

2. Laminate Theory

Classioal laminate theory supplies a oon, Jenient pPooecltu_e to

prediot tlse response of a laminate to external load. The theory uses

anisotropic elasticity to obtain the stress-strain relationship for the

basic lamina. The stress-strain relations of individual laminae are

transformed to coincide with a global set of reference axes. The

stress-stain law of the laminate in terms of the properties and

distribution of individual laminae are calculated using a sunmetion.

Resultant forces and moments are defined by integrating the stresses

throtIjh the thickness o£ the laminate. The plate oonstituti_e equation

is inverted, gi_,ing midplane strains and plate tin-,Tattles in terms o£

applied £oroes and moments. These strains and curvattn_es are

substituted into the lamina stress-strain eqtmtion to obtain lamina

stresses in the global system. The stresses obtained are then

transformed into the principal meterial system of the lamina in cl_estion

and oompared with ultimate stresses obtained using failure oriteria.



r

49

3. Strer_th Theories

The strength theories in ICill4stoke use o£ several assumptions.

First, it is assumed that there au_e five characteristic values o£

strength of a unidirectional composite:

I. longitudinal tensile strength

2. longitudinal compressive strength (3 separate criteria)

a. rule o£ mixtures

b. fiber microbunkling

o. de laminat ion

3. transverse tensile strength

4. transverse compressive strength

5. in-plane or intralaminar shear strength

The fracture modes us_lly associated with these strengths are sho_n

schematicalty in Fig. 29.

Once ply strengths are calculated (in the ply c_ordinate systems),

geometric trans£ormations are used to calculate composite £ailure loads.

The process used is brie£1y described below.

1. Calculate loads (in composite system) required to induce load equal

to ply strengths (in ply systems) £or each mode.

2. Calculate minimum of failt_e loads £or each ply.

3. Calculate minimum of £ailt_e loads of all plies, and use this load

as the £ailure strength of the composite for a particular failt_e

mode.
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Fig. 28- Typical Stress-Strain behavior of
unidirectional fiber composites.
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E. Review of _pplie._ble Statistical Conoepts

Composite properties are oaloulated for large samples using a

SlSeoifio set of distributions of input properties. In this context,

small sampling theory does not apply, because the samples used are

suSf icient ly large.

I. Sample Means

Calculation of the mean sample values proceeds by defining

n

X. "
l

i-I

11'ea.t'l = X -
n

_here n = sample size

x .= sample data wa lues
1

The population mean is unknown, so the sample mean is assumed to be the

best estimator of the population mean.

2. Sample Standard Deviation

/qn estimate of the population standard deuiation is calculated

using the statistically efficient estimator

rl

[ °n- 1 i=1 (xiOr n 30

3. Confidence Interval Estimates

/_l important problem in the area of statistical inference is the

estimation of population parameters {such as mean, _ianoe, etc.) from

sample statistics. Parameters x and a are the mean and standard
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de_Jiation o£ the sampling distribLrtion o£ a statistic S. The sampling

distribtrtion o£ 8 is assuned as approximately normal (_hioh is true for

many statistical distributions if n __ 3Q). Cor_ider_e interval

estimates are constructed for the statistic S. Thus, intervals are

identi£ied £or _a_ich it can be asserted with a reasonable degree o£

certainty that they contain the parameter considered. Obviously, the

degree o£ certainty (or confider_e level) will vary with the size o£ the

interval chosen. Values of confidence coefficients, zc , are associated

with confidence levels. For example, an actual sample.statistic S is

e_ected to he found lying in the interval (x -zco ) to (x + ZcO ) (_here

a is the unknown population standard deviation) some percent o£ the

time, Let the z value in this example he 1. Assuming a normal
C

sampling distribution, (with z = 1) the normal distribution area
C

function specifies that S fails between {x - a) and (x ÷ o) about

68.27/. o£ the time. Similarly, the oor_idence of x 17ing in the

interval (S - a) to (S + a) is about 68.27/.. The endpoints o£ the

intervals are known as confidence limits. Uarious coneidenoe

coefficients zc, corresponding to frequently used confidence levels,

have been tabulated.

In this _rk, the confidence interval for" means is given in terms

0£ the sample statistics by

_here

1.645, 1.960, and

O

X + Z

z is the confidence coe£fioient, _hich takes on values 0£
C

2.580 for the 90, 95, and 99"/. cor_ideri=e levels,
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respeot ire ly.

4. Regression

The term "regression" as used in the area o£ statistios refers to

the process o£ £ormulati_ a mathematical m)del to explain r_mdou_ly

observed phenomena. _me £_tional £orm £or the _ey each variable

enters the m)del must be assumed. O0_p_rison o£ the d_ o£ £it o£

di££erent assumed m_els ideally leads to a better m)del. The basic

regression strategy used here consists o£:

I. Asstme a multiple linear regression m_del. The normal c_tions

£or suoh a m)del are:

(v}--[x]{_}÷ {_}

1_here

{Y) -- vector o£ dependent variable values

IX] = matrix o£ £unctions o£ independent _-ariable

(_) = regression "true" values

(_}- errors

The normal equations can be sol_=d as £ollows:

l_here

[x]T{v) = [x]T[x](_} ÷ [x]T{_}

{b) ; [xTx]-I[X_{V}

(b} = parameter estimates

2. Use a standard statistioal package (Re£. I?) to estimate r_,_ession

parameters.
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3. Calculate properties of regression parameter distributions to

assess model preoision.

In the event that [X'X] is singular, implying that some of the

[xTx] -1normal equations are linearlF dependent, does not exist. The

model should be expressed in terms of fewer parameters, or should

include assoyed restrictions on the parameters.

The square of the multiple correlation coefficient, R2, is usually

calculated for each regression model, and supplies a oon_nient measure

of the degree of fit between data values (Y} and _alues {Y)

predicted by the regression equation. It is de£ined by

R 2 =
Sum of Squares due to regression model

Total Sum of squares about mean Y

r (Yi- Y)"

Frequently, it is necessary to determine if inclusion of partioular

terms in a regression model is worth_hile. To this end, the extra

portion of the regression sty, of squares _4hicharises due to the terms

under consideration is calculated. The mean square (defined as the sum

of squares divided by the corresponding degrees of freedom) derived from

this extra sum of squares can be compared with s 2, the estimate of a 2,

to see if it appears significantly large. If it does, the terms under
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consideration should be included. The statistic is freqx_ntl y compared

to the appropriate percentage point of the F- distribution, _hich is

tabulated.

Supopose the extra stun o£ squares due to a parameter, given that a

number of other parameters are already in the model, is calculated.

Symbolically,

SS(bi_bo,bl,...,bi_l,bi+l,...,bk) i = 1,2,...,k

represents a one degree o£ freedom ( 1 df ) sum o£ squares _hich

measures the portion of the regr_ssion sum of squares due to the

coefficient b..z This is a meastwe of the value of adding a _i term to

the model _ich pre:,iously did not include _i" The corresponding nean

square, equal to tl_e SS (since it has one dr) can be compared b7 an

F- test to s 2. This is known as a partial F- test for the single

parameter _i' _hich is a special case o£ the F- test described earlier.

The stepwise regression procedure (Re£. 18) is a structured way to

insert variables in order of correlation until the regression equation

is satisfactory. The partial correlation coefficient measures the

relative importance of terms not yet in the model, to choose the next

candidate for entry. The analagous statistic, F- to enter (or F- to

remove) is usually evaluated for each predictor at every stage as though

it were the last term to enter the nodel, to determine if terms retained

at a previous step have become superfluous, because o£ some linear

dependence with terms now in the model. The largest F- statistic

calculated at each step is compared with the appropriate percentage

point o£ the F- distribution, and the predictor variable is entered (or
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removed) based on the significance of this F- test. Testing of the

least useful prediotor is per£orned at every step. The H 2 statistic is

oaloulated, to provide a neast_e of the value of tI_e regression at eaoh

step. This step_ise linear regression scheme is used in this _rk

because of its computational econon_, and because it allo_s the analyst

to assess the relative influence (or correlation) between individual

prediotor variables of a selected model and response for a particular

data sample. Other sohemes are available (Ref. 18), such as back_erd

elimination. The step_ise procedure is recommended for its direct

nature in testing the model with only significant predictor terms.



_. Property Histogran_ and Distributions

In this _ork, fiber and matrix properties are alle_ed to asstme a

range of _ralues to assess the sensitivity of the composite ply

properties to constituent pertm'bations. Graphite fiber and epox 3,

matrix are used as the constituents. Initially, t_o separate samples o£

output data are generated and studied to demonstrate the effects o£

input parameter changes on composite material properties. These t_

cases are compared with a deterministic base case with no random input

property generation. The data for all three cases is given in Table I.

The results of cases 2 and 3 are sho_n in histogram and cumulative

distribution form in Figs. 30 - 42. The results o£ the deterministic

case 1 are s_ized in Table II, and can be easily compared with the

histograms and distributions.

57
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TIIBLE I-

II_PUT

TErn (d_._ _)
#
O

/i
o

k
k

EFPI (ksi)

O

l_FP2lksi)
/I
o

/i
o

GFP23(ksi)
#
O

sF_r(k_i )

SFPC (ksi)

a

_(ksi)
P
o

s_VTlk_i)

a

SHPC(ksi)

SMPS(ksi)

II_PUT I_ITII

CASE 1

0.0

0.50

O.O1

400

400

15

35

13

S_LING

C4_5E 2

0.0

5.0

0.5
0.1

m

3.0
3

31000
1500

2000
100

2000
100

1000
50

400
20

400
20

500
25

15
20

35
20

13
20

C_E3

0,0

10.0

0.5
0.2

3.0
5

31000
3000

_ 2000
200

2000
200

1000
100

400
10

400
10

500
50

15
10

35
10

13
10
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TI_BLE II-C_E I RESUL'I_

PROPI_Y VI:LiJE

]DCI1

EC22

EC12

RUCt2

NUC21

CTEI1

CTE22

CTE12

SC_D_T

SCgXC

SCYYT

SCYYC

SCXYS

15750 ksi

1065 ksi

516 ksi

0.275

0.018

0.775 x 10-8

0.181 x 10-4

0.000

203 ksi

165 ksi

11.74 ksi

27.41 ksi

10.01 ksi
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B. Fiber Strength Effect

To show the effect of fiber strength ohanges on the longitudinal

strengths of the oompositej se,_ral shape parameters of the _eibull

distribution for fiber strength are assumed. The monte carlo procedure

is then oonducted at several fiber _01ume ratio values. /_II properties

are varied, except fiber volume ratio. The distribution parameters of

all properties except fiber strengths are held constant. The curves

generated are sho_ in Figs. 43 and 44. In the figures the solid lines

and s_mbols show the means of the 9_/. confidenoe inter_ral estimetes for

the sample size o£ 50 chosen at each point. The points on both sides of

each curve locate the upper and lower bounds of the oonf ider_e

intervals. The convention described is intended to provide a convenient

indioation of the dispersion of the sample _ralues at each point.
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F_g. 43- Lon9itudinal Tensile Strength; for various
shape parameters of fiber strength.
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Fig. 44- Longitudinal Compressive Strength; for various

shape parameters of fiber strength.
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C. l_trix Strength Effect

The effects of changes in matrix strength on conposite strengths

are studied by suitable vaa'iation of the shape paran_ters governing the

matrix strength distributions. /_alagous to the plots given for fiber

strength effects, the matrix effects are sho_m in Figs. 45 - 47.
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Fig. 46- Transverse Compressive Strength; for various

shape parameters of matrix strengths.
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In-plane Shear Strength; for variou_

shape parameters of matrix strengths.
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D. Fiber Orientation Effect

/_ssun_d _ral_s of the fiber orientation angle dfstPib_rtion

parameter are oonsecu_i_ly used in the monte carlo _tn_ to assess

the effects on several oo_posite properties. These plots are sbo_n in

Figs. 48 - 57.

E. Fiber Stiffness Effeot

l_sstmed values of the fiber modulus distribution parameter are used

in the simulation to similarly assess the effects on the related

oonl_osite properties. The plots thus generated are shown in Figs.

58-67.
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Fig. 48- Longitudinal Elastic Modulus; for various
shape parameters of fiber orientation.
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TRANSo ELAST !C MODULUS
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Fig. 49- Transverse Elastic Modulus_ for various
shape parameters of fiber orientation.
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Fig. 50- In-plane Shear Modulus_ for various
shape parameters of fiber orientation.
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Fig. 51- Longitudinal Tensile Strength; for various
shape parameters of fiber orientation.
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Fig.
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52- Longitudinal Compressive Strength; for various
shape parameters of fiber orientation.
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110 =

o? /k o . 10°

100 - t-)a= s_

OO -

5 7o

6o

= 5o
" '+0

== 30

20-3 ._ .5 .6 .?

F]BER VOLUME RAT]O

Fig. 53- Transverse Tensile Strength; for various
shape parameters of fiber orientation.
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Fig. 54- Transverse Compressive Strength; for various
shape parameters of fiber orientation.
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I N PLANE SHEAR STRENGTH
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Fig. 55- In-plane Shear Strength; for various

shape parameters of fiber orientation.
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Ftg. 56- Potsson's Ratto (major); for various
shape parameters of ftber or|entatton.
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FI9. 57- Polsson's Ratio (minor); for various

shape parameters of fiber orientation.
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Fig. 58- Longitudinal Elastic Modulus; for various
shape parameters of fiber modulus.
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Fig. 59- Transverse Elastic Modulus; for various

shape parameters of fiber modulus.
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In Plane Shear Modulus; for vartous
shape parameters of fiber modulus.
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61- Polsson's Ratio (major); for various
shape parameters of fiber modulus.
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Fig. 62- Poisson's Ratio (minor) for various

shape parameters of fiber modulus.
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Fig. 63- Longitudinal Tenstle Strength; for various
shape parameters of fiber modulus.
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Fig. 64- Longitudinal Compressive Strength; for various
shape parameters of fiber modulus.
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Fig. 65- Transverse Tenstle Strenoth; for various
shape parameters of fiber modulus.
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66- Transverse Compressive Strength; for various
shape parameters of fiber modulus.
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Fig. 67- In Plane Shear Strength; for various

shape parameters of fiber modulus.
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G. Regression Models

output data o£ oases 2 throtcjh II are used as successive inputs

to the regression scheme. The goal o£ stepwise regression, as used

here, is to measure the degree o£ correlation between a dependent and a

set c£ independent variables £or a given set o£ data. The outputs o£

the regressions conducted show the independent variables accepted into

the model (based on F-test criteria) in order o£ degree of correlation

with the dependent variable of interest, along with the final R 2

statistic. (The ;I2 values represent the square o£ the multiple

correlation cme££icient, a convenient measure o£ the £it hetween data

values and ,ralues predicted by the regression equation. )

ordering o£ predictor variables by stepwise regression has

se,Jeral important uses. In this study, the scheme facilitates easy

investigation o£ the e££ects of material ohar_es on composite

properties. Since the monte carlo scheme permits generation o£ large

amounts of data, the regression is easy, inexpensive, and can provide

insight concerning the sensitivity of dependent variables for assuned

distributions of predictor variables. _ variety of material

oon£igurations and constituent distributions are eKamir_ed, and a model

construnted for each dependent (or response) variable. It must be noted

that the relative correlations o£ predictor variables with response

variables will be £ur_tions of the assuned distributions, the particular

data sample considered, and the £m_tional manner in _hich the predictor

variables are incorporated into the model.

lq simple regression model was asstmed £or each response variable.
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The first set o£ "simple" regression models uses as predictor £(mctions

only the independent variables as individual terms. To he more preoise,

the predictor variables used ape not simply the independent _rariable

values, £or there are 15 o£ these £or each layup. The aritbJ_etio mean

o£ independent variable values is thus used as the predictor uariable in

the £irst set o£ regression models. The only exception to this is the

use o£ the sin 2 of the average of the fiber orientation angles as the

axcjular dependence predictor, denoted by THET_ in the tables to £ollow.

The simpler response variables can be adequately described using the

linear function forms in the regression models. The simple variables

include the elastic constants, (SClI, SC22, I_C12, I_JCI2, bIUC21) and

coetfioients o£ thermal expansion (CTE11, CTE22). The results o£ the

regressions per£ormed in the "simple" manner are gi_n in Tables III -

Ell/. In the tables the input labeled with NI through N5 and WI throgh

W5 represent narrow and wide distributions o£ all properties. Input

labeled N6 through NIO and N6 thro_h W10 describe the sa_e

distributions, except that the oonposite is assumed tmidirectior_l, i.e.

no angular variation. The distinction sl_ws the reduction in predictive

capability induced by deviations o£ the fibers from aligned orientation.

The models asstmed £or the response (output) uariables are of the

form

_re

Y = Bo + BIXl + B2X2 + B3X3 + ... + B X
nn

Y = response v-ariable (E_II, SC22, SC12, etc.)

B = regression paraneters to be obtained
n
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Xn = average of independent variable values through the

thiohness of the ply (THE-T_I,FVR, VVR, eto. )

Each model postulated contains all independent variables that

appear in the equations for the related ply property (see Appendix B).
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Tpms_ III- Lo_3rn._DI_L,_Lerxxn._ (I{xzlt)

IHPUT

SIMPLE M[X)EL

RC_ R 2

N1

I(2

N3

N4

N5

I,;1

W3

W5

0.3

0.4

0.5

0.6

O.7

0.3

0.4

0.5

0.6

0.7

I_JR,Ii]_?I

In_l,IDFPI,THET_

l_l, I!FPI,TilEIrR

In/R,I_]FPI,IIlETR

l_011,I_'PI

I_ZR,TI_'TR,I!]_P1

In,R,]_P1, TI_-TR

In,R,_, I!]FP1

I_R, IIIETR,EFP I

l_v]_,E]FPI,THETR

B3.17

92.63

94.02

94.59

84.00

64.49

89.88

72.85

65.37

57.83

N6

N?

N8

N9

NIO

I,;6

W9

WlO

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

O.?

FVR,EFPI

InJl_,E]_PI

In_l,E]_P1,II]_IP

In/ll,I_P I

In_l,I_P1

In,R, I_'PI

FVR, EI_P1

I_/R,E]FP1

99.83

99. B1

99.69

99.74

99.77

99.13

98.

98.90

99.59

99.34
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TP.B._ lV- TRP._tR_:_'E _ (!_C22)

INPUT

NI

N2

N3

N4

h_

W1

k14

k_

N6

N8

k,9

N10

W6

147

WB

W9

W10

0.3

0.4

0.5

0.6

0.?

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

SIMPLE ;_

TERMS _CCI_

F',_, _P2

F_'R, EFP2

F'v'R,_A, _'P2

_, THE'r_, EFP2

F_R, THE'I'A, _'1_2

FVR, TH]_, _"P2

F_rR, ]_P2

FI_, _"P2

F',JR,E_P2

F',_, EFP2

1=VR,]_=P2

F'JR,]_P2

FVR, _P2

R 2

83.50

85.23

91.83

93.26

93.06

78.36

90.73

80.15

86.05

87.14

87.13

86.15

90.97

93.47

92.05

79.72

70.?1

81.92

88.62

84.05
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V- RXXCUS( C12}

INPUT
....,--,.........

N1

1,[2

N4

k_3

kI4

1,5

N6

R?

R8

R9

RIO

146

_?

MB

R9

1,/IO

0.3

0.4

0.5

0.6

0.?

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

5IrWLE

_R,FI_, G_,G_23

_A, FVR,GHP,G_12

THai'A, P'v'Rt GMP

_, P',_, (3NP,GFP12

_A, FTv'R,Grip

THai'A, FVR, (3_'P23

THETA, F'JR

T_'TA, F_ j GfF, GL_23

FVR,(3tIP IGFP12

F1_GNP, G_23

F'._, G_, Gi='P12

F',_ j GtlP, GFP 12

FVR, (3NP,(3FP 12

F',_, GNP, GFP12

FVR, GNP, GF1_12

F'_, G_

F_R, GNP, GI;'P12

R 2

97.01

98.85

97. S_

98,01

98,42

94.79

94.27

93.71

95.62

96.67

97.66

98.02

96.65

97.11

98.55

96,93

92.4S

95.16

97.18

96.9_
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T_ VI- POISSON'S RRTIO I MPJOR (NUC12)

INPUT

H1

N2

143

N4

N5

_J2

I,;3

W4

_5

N6

N?

N8

)19

NIO

kS

W7

IJB

69

WIO

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.9

0.3

0.4

0.5

0.6

0.7

SIMPLE

TE]_MS _CI_I_

THETR,I_P1

THET_, FgR

THETR, FgR

THETR, FVR, m_P1

THETA, FVR, I_P2

THETA, I_'P1

THET_,FVR

THETR

THET_, Vt_R

THETR, FVR

FVK

FUR

FUR

FVR,_FR

FUR

FVR, GF'P12, m;'P2

FVR, EFP2

R 2

96.39

97.88

96.60

98.32

96.62

88.43

84.62

89.48

84.05

92.05

97.83

98.48

97.77

98.40

99.17

97.32

96.45

96.38

98.34

96.96
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INPUT

NI

1_2

H3

N4

WI

_2

k_3

_25

N6

K8

H9

N10

1,;6

_r7

_9

WlO

F_
M

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

TP_ VII- POISSON'S RRTI0:

SIMPLE MODEL

_C_

"H.I_R, b-gR

TH_P., b'gR

TH_P., FVR, I_P 1, ]E_"P2

'rI-IL_.q, FVI:Ii I_"P1

_Rt Ft,'lt

THL_P., b"_, SFP2

'I]_['P., F'4R

TH_R

•FH_p., FVI:I, EI_P1

F',_, EFP 1, E_=P2

F'VR, EFP1, EFP2

F',_, ID;'P1, I_:'P2

F"JR, I_=P1, I_=P2

FI_ i I_'P 1, I_=P2

FVR, EFP1, GFP12

l:'v'R t _;'P 1, I_P2

FV'R_E_PI, _'P2

FVR, EFP 11SFP2

EFP 1Dl_V_l,EFP2

MINOR

R 2

91.15

94.?B

94.31

97.18

95.87

90.87

89.86

91.93

92.5?

94.78

95.64

94.90

95.40

93.12

9t.83

87.73

85.06

84.29

90.37

91.42
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T_ VIII- LONG. TI_RI_. I_(PRI_ION (CTEII)

INPUT

N1

kI3

N4

MS

W4

N6

147

N8

N9

N10

R6

R7

W9

W10

F_

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

O.5

0.6

0.7

S I_I_E 1_

RC¢_FI_EI)

F_R, T_'TR, _'P I

THETR, F_'R,_ I,_'R

FVR, THETR, _P1, V'_R

F'v'R,THETR, _FP I,Vv'R

THETR, FVR

THETR, l_,'R,_ 1

THETa, F'A_

THETIS,F_'R

THET_, FVR, '_R

THETA

F_I,_PI,_

F'JR,EFPI,_

FVR,I_PI,I_R

FVR,_I

FVR,_P1

FtJR,_I

F_R,I_'PI,V_IR

FVR,_P1

R 2

90.29

94.46

95.72

95.23

97.63

80.53

78.91

84,77

74.37

80.,50

97.21

96.96

96.53

96.60

96.24

91.60

90.98

91.55

96.03

94.13
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T_a.Z IX- TR_.m. T_B_a_.I_(P_LNBZON(_2)

ii,ac,crr

SIMFLE

T_ ACCi_
R 2

N1

N2

N3

144

145

141

W2

W4

_J5

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

FVR, TI_-T_, VVR

FgR, THETJl, VVR

FVR, THET_, VVR

FV_, THET_

FVR, THEI'_

FgR, THET_I

FgR, THET_, E_'P1, VVR

FVR, THETA

FVI_, THL_A

99.60

99.21

99.46

99.69

99.79

95.04

98.60

95.19

94.84

97.98

146

M7

N8

N9

N10

W6

W7

_J8

W10

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

FVR,VVR,S_I_I

FVR,VVR

FVtt, VVR

I=_,_I

FgR

FVR

FVR

99, ?0

99.53

99.65

99.67

99.75

99.15

98.81

98.88

99,47

99.22
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Tm.E x- "n ILe (sc -r)

INPUT F'v'R

SINPLE

_CCI_rED R 2

NI

N2

H3

N4

145

WI

I/2

W3

W4

1,15

0.3

0.4

0.5

0.6

O.?

0.3

0.4

0.5

0.6

O.7

Inv]l,SFPT

Fv_l,SFPT, TI_-T;I

Fl_l,SFFr

SFPT, Fv_l

I_FPI,SI_T

_, EISP

l_v_,SFFT

12.25

43.?2

21.68

43.68

40.97

33.3?

39.02

26.13

42.27

33.55

N6

N7

N8

H9

N10

W6

1,17

1,18

1,19

W10

0.3

0.4

0.5

0.6

O.7

0.3

0.4

0.5

0.6

O.7

FVR, SFFF

FVR, SFFT, EFP1

FLTR,SFFT

FVR, SFPT

SFFT, FVR

SFFT, FVR

FVR

FVR, SFFT

FVR, SFFF

SFPT, FVR

52.12

68.43

34.89

49.00

24.00

46.61

19.33

33.13

34.40

37.65
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INPUT

Tl:_t..E gl- I._. C_IVE S'_

SII'FLE I'_

b'X/R "_ AC_

N1 0.3 FVR

N2 0.4

N3 0.5 NONE

N4 0.6 SFPC

N5 O.?

W1 0.3

W2 0.4 THETA

W3 0.5 GMP, SMPC

W4 0.6 THETR

_5 0.7 NONE

(scxxc)

R 2

12.25

18.23

8.52

8.08

8.02

9.29

20.59

9.18

N6 O. 3 SFPC

N7 0.4 1_

N8 0.5 NONE

N9 0.6 NONE

N10 0.7 (3FP12

W6 O.3 b'_

O.4

0.5

k_9 O,6 GF'P12

R10 0.7 NONE

11.30

12.O1

9.40

10.76

9.85

8.87
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TP/_.E XII- T_ TB}BILE S'IILB}IG'I'H (SCYYT)

IHI:'UT

SII'IPLE

R 2

NI

1(2

N2

Iwl4

W1

1,12

M3

I44

i,J5

0.3 FVR

0.4 FVR

0.5 SNPT

0.6 P'dR

O.7 NONE

0.3 F_/R,VT_T_,SNPT

0.4

0.5

0.6 NONE

0.? FVR, SI_T

27.03

32.91

8.10

41.92

26.89

41.43

14.74

31.05

N6 0.3 FVR

N? 0.4

N8 0.5 FVI:I,EFP2

]{9 0.6 HONE

N10 0. ? ]_HE

W6 0.3 FVR

M? 0.4

la3 0.5 SNPT

149 0.6

W10 0.7 b"4R

9.43

8.19

15.58

33.8?

13.39

8.62

2"7.85

32. "7"7
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NI

N2

N3

N4

145

WI

N2

k13

TP.itE XIII- TP_VI_ C(_I_IVE _

 ca -r D

0.3 FVR, SNPC

0.4

0.5

0.6 FV_

O.?

0.3 F'v'R, _-_R

0.4

0.5 1_, SMPC

0.6

0.7 F_R

N6 0.3

_r7 0.4 NONE

N8 0.5 NONE

X9 0.6

N10 0. ?

_16 0.3 1_

_'7 0.4

0.5 NONE

W9 0.6

I#10 0.7

R 2

33.17

30.10

38.93

28.19

43.26

19.5V

15.85

28.6B

11.64

31.9?

33.05
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INPUT

141

N4

145

I,/1

W3

I,;4

1,15

TP.I]_.E ]{IV- IN PIP.HE SHF-qR _ (SCXYS)

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

SIMPLE 1_

31_LMS I_CC_

FVR, THETA, GFP12

FUR

THETA

THETA, GFP 12,FVR, SMPS

NONE

THETA, I_3_,SMPS, FVR

FUR

'n.L_rA

_A

NONE

R 2

28.51

8.74

14.96

31.84

48.16

43.26

8.40

14.75

N6

N7

N8

N9

N10

I,;6

k_

I,;9

I,;10

0.3

0.4

0.5

0.6

O.7

0.3

0.4

0.5

0.6

0.7

NONE

NONE

NONE

SMPS

trv'R

FV3_,SMPS, GMP

NONE

GF'P12, b"X_

SMPS

8.25

8.53

29.06

22.20

17.73
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Further regression models rare studied, in an attenlpt to impro_

the predicti_ capaJbility of the models, especially f_ the strengths.

These models, incorporating higher order £unctions and combinations of

predictor variables used in the simple models, show sone improvement

over the simple models, pro,Jing the value of including the "'interaction"

effects of predictor _ariables in the recyression models. In addition,

the higher order interaction models can fit response f_a_ctions o,_er a

wider range of fiber _lune ratio, with associated improvements in the

R 2 statistics. The data cases COH1 and CON2 contain selected points

from the entire r_e of fiber volume ratios, to supply the samples Eor

these runs. Furthermore, since higher order models are postulated,

THET_ is taken to be the cosine of the average of fiber orientation

angles. The ,rariable _ is a "'dummy" variable, that is a ftmction of

other variables in the model. It is defined as

19JR = 1 - _JR - t_rR

and is intended to represent an "'average" mtrix volume ratio over the

thickness of the ply. The interaction models are sho_m in Tables ]{9 -

]C_JI.

The general form of the postulated models now includes higher order

terms, so the predictor variables are tested up to the fourth po_er.

Symbol ical Iy,

V = eo + B,(T"L_,_) * e_(_"V_) ÷ e,(We) ÷ B.(_l) + e_(m:,) +

B.(_) . e,(_-'r_)' . ,.(TmTn)(_) . ,.(_-'rA)(V_) *

,:,,o('n.L_)(_,) + ... + s,,('n_'_)'(F_)(e;='e,) + ...

B,,('n,L_n)" + B,,(F_)'+ ... etc.
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The number o£ terms possible in a oomplete £ourth po_er polyramial

expansion beoowes _ieldy £or the oases studied. Considering tlse

limitation o£ the size o£ the pr_=cliotor mtrix in the regression package

used (100 x 100), the terms are intuitively grouped in the hope of

eliminating large groups at one time. The regressions _ure conducted

using "'tmlikely" candidates for admission into a particular model, and

if no terms are entered, subsequent regressions are conducted withotrt

those terms. The justification £or this approach is not a statistical

argunent, rather an interpretation of the physical principles active in

any chosen model. The regressions to eliminate terms are merely used as

a check on _hat seems intuitively reasonable.



118

T_ xv- LONGITUDINAL eOCULUS (_II)

IHPUT
J

I_I(_

TE_MS l_C_ R 2

H1

142

H3

N4

H5

M1

M'2

M5

0.3

0.4

0.5

0.6

O.?

0.3

0.4

0.5

0.6

0.7

THEI'A_NFgRNI_P I

THET_ "*FVR*EFP I

THET;I"*FVR*EFP I

THET_I"*FgRNEFP I

THET_".FgR_EFP I

"rHET_"*FVR*I_'PI

qTIETA"NFVR*E]F?1

TI-IEq'J_'a*FVR*I_:'P1

THET_"*FgR*I_:'P1

84.50

92.66

93.76

94.24

85.08

63.84

89.86

71.79

64.37

55.68

N6

N7

N8

H9

N10

I,;6

M7

W8

W9

WlO

0.3

0.4

0.5

0.6

O.7

0.3

0.4

0.5

0.6

0.7

In.rR._I,_2*]T.TR

In.'R*EYP1,FgR"

FVR*_I

lnJR._l,_=*tr, v'R,t"JR"

FVR._I,I_P-If_

FgR._I,tr,/R

FVR.I_"pI,IfJR2.FVR

F,JRN_L.ffJR=*_

FgRN_I

FgR_l_P1,EMP-1TJR

99.82

99.83

99.72

99.79

99. ?9

99.17

98.53

98.99

99.58

99.38

COR1

COH2

"I_A"wFX3RwI_ 1

F_RwI_P 1,t"OR"

96.48

99.92
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INPUT

II_I(_

TI_ RCCI_ R 2

N1

]¢2

N3

N4

!¢5

W1

b'2

;;3

W4

145

0.3

0.4

0.5

0.6

O.7

0.3

0.4

0.5

0.6

0.7

]='v'RwE>'_2w_IP, _2 =wF'v'R,THETQ_F_wI_f_

_JRN_FP2.E_JP, I_F'P2 =_F'v'R, THETR

F'VR*E]_P2wE21P,_R2 N_F'P2, MVR"

F1;RN_"P2w_IP, THEI'/_ 2wiSP2, _;'P2 2xFVR

99.19

99.55

98.92

99.22

93.26

96.79

93,49

88.35

){6

N8

N9

N10

146

147

W8

W9

W10

0.3

0.4

0.5

0.6

0.?

0.3

0.4

0.5

0.6

0.7

99.22

99. O7

98.89

99.14

99.23

98.62

98.28

97.93

98.44

97.86

CON1

COK2

*** NF_.qRLYSI_

FgR*EFP2*SMP, FURwI_P2wIIVR 99.79
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'rm_.E xvxi- IN eua_ s_ _ (m12)

II_PUT

I NTE_:ICTION

TERMS _C_ R 2

M1

N2

N3

N4

N5

W2

tJ3

144

_5

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

THETA, _, TI_'TA _FgR_R'IP

*** NF_PJ_Y SIN(_

THEI'R:, FgR:*GMP, GFP12*GMP

THEYA, FVR2NIgJR

THETA, FgR 2_GMP, GF'P12

"THETR'_, F'VR'4_3MP, FVR2

NED.RLY S II_(XII.P.R

_'J*F'0RNI'NR, TH_R'_NVVR, V'v'R*Gt'_

THETP.", F_ 3*_PIP, THET.o.

*** NEP.RLY SIN(IE/R

97.86

97.75

98.01

98.46

95.49

91.0,4

96.70

N6

N7

R8

N9

R10

W6

k'?

LJB

I,;9

W10

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

F'4R_3MP, 19¢R2*GFI_ 12

FVR_]dP, GFP12

FVRwGMP,FVRw(R:'P12

FVRw{2_, I:',JR=*GFP 12

FVR _*GMP, FVR*GF? 12*GMP, ITJR2*GMP

FVR*Gi'JP, FVR.'GFP 12

FVRwGMP, F_;R_GFP12

F_rRwGMP,F'4R_3FP 12

F'CRN_3MP,F_8 2t_FP 12

F'CR"wGMP,F'JRt_I;'P 12_]_P, PNR2te3MP

97.73

97.97

96.52

97.10

98.90

96.91

92.37

95.08

97.42

96.85

C(_1

CON2

FVR2w_,VVRw_,FVR_,THET_"*F_8_K]_P

I_v'R2_,_3MP,Gt_RI2mG_P

99.09

99.54
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IHPUT

NI

lq2

;,I3

N4

N5

W1

W2

_q

H6

H7

H8

N9

H10

W6

W8

_9

W10

TABLE }{VIII- I._. 'I_ I_I_BION |C'I_II)

Ik'I_ION FK_

F_l _ lqCCI_ R2

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

THETA =wigJR,ITJR:,FgRwEFRI *I'FJR,E]SP2*EFP I 92.51

"IRETA2wITv'R,THETR", I_P1 _,]_P 2*FgR, 19JTI2wE_"R1 96.38

THET_I2*l_v'R,MVR, I_'P2*ITJR,I_MP2*I_P 1 97.26

FVR*EFP I,THETR*FVR*EFP 1,EMP 2*ITv'R 96.32

.w-, NFth'_Y SIHOULP.R

TI-IETA", ITJR2*t_'P - 80.81

THET_", I_MP2*ITCR, 87.98

THETR", I'N'R2*_"JR 75.20

THEIR", pVR2'm_ 82.97

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

IfVR2wEl_i_,EF? 12*E]MP,FgR"

ITJR2wE]_F),F'v'RwEFPIwITOR,ITJR:wVgR

IfJR2wEISP,E]rp1,FVFI'I

M_TR2.I_, I_P |2.PI_

MVR 2*E)_P,I_'?I*IT4R.

I'IQR2wiSP, FVRw_lrPIwITJR

I'FJR2wID_, EFP 12.ITv'R

19JR2wEI_P,E]_?I=*MQR

IT4R2*I_P 1,_ 2wlg_R

99.29

99.17

98.94

98.94

99.33

98.35

98.55

99.56

99.00

98.20

CONI

CX_2

THETR, 19JR3,BFP1 =.trVR,FgR*QgR*I_FP 1

ITOR2wI_MP,FgR*_FP I*Ig,'R,In;R",FgR 2*VVR...

96.82

99.84
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INPUT

NI

N2

)[3

N4

]45

WI

k'2

k13

W4

k_

N6

)r7

N8

);9

N10

W6

k_

WlO

FVR

II_r]BIb_'TION

TI_P_S _C_

0.3

0.4

0.5

0.6

0.7

0.3

O.q

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.?

l_s_ 3

FVR, ffJR _

FVR, ffJR 2

FVR, ID_P2_FP1

FVR, M_R_

1;VR, FVR_"P 1NE2_P

F_R, I_R W

FVR,_ _

FVR, E21P:_FVR

_2

99.60

99.38

99. q8

99.73

99.81

95.16

98.71

95.91

95.69

99.70

99.59

99.67

99.70

99,82

99.26

98.97

98.88

99. S?

99.29

THETfi: _I'NR 99.32

99.95
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INPUT

H1

N3

N4

W1

W4

k_

N6

N7

R8

N9

R10

1,16

1,19

COR1

CON2

FVR

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

T.qBLE _- PO£_ i_TIO| Mt_tJOR. (NUCI2)

Ih'l_ION 1_

TERMS _CCE_TE_

-_(-, HF..qI_Y SIl_UIt_

THETA, I_-'P2_NVR

THET_I, GFP112Nff,_

THETA, _;'Pl-_

THL_A, F'v'RNEFP2

I_._LY 5II_K_JI._R

THE1"Iq,THETIq"NFVR_*GFP12

THETn

_tq, VVRN_FP 12

THET_, F_Rt*I_v'R

F'v'R

F'v'R

FUR, FVl_ff._

FVR

F'VR, I_P I_EFP 2, GFP 12Nl_v'R

FVR, FVI_"P2

SII_JI.AR

IIVR,I_RNIIVR,I_'PINIYJR

R 2

97,96

96.71

98.17

96.48

84.73

89.43

84.27

92.10

97.83

98.48

97.77

98.52

99.17

97.32

96.50

96.38

98.41

96.97

99.77
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TI_MJE KXI- POISSON P_TIO| MINOR (N[;C21

INPUT FUR

I_CTION MDDEL

R 2

N1

H3

N4

HS

W1

M2

M3

IJS

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

THET_. THETI_"wFVR_I_:'P 1

THETR, FV'RNEFP1

THEIR, F'CR_"P 1, _P2N{;FP 12

THET_. THET_" NF_R*I_"P 1. _;'P2

THETg, THET_"NF1.'RN_ 1

THETQ. FV'R_{3_P12

'THEIR, EFP2*MVR

THETR, B"CR*I_FPI

THET_

THETR, F'JR_EYP 1, THETR "-FVRw_NR, EFP 2w_

91.69

94.66

95.10

97.15

95.82

91.16

89.52

92.06

92.53

95.60

N_

!(8

N9

N10

1,16

_J7

1,19

W10

0.

0.

0.

0.

0.

O.

O.

0.

0.

3

4

5

6

7

3

4

5

6

7

F'CRwEFPt,FVR-_2

F'v'RNI_='P1,F'CR-_2

F'v'R.EFP1,FVRN_2,F'v'Rx{3:'P12

F'VR-EFR1,F'V'Rw_2

FV-RNEFP1,FV'Rw_2

F_R_t,(3F'PI_ITJR

F'v'RNEFPI,F'CRN_2,1='VR_ITJR

F'v'I_I_PI,EFP2

FVR-E_P1,FVR-_2

F_RxEFP1,FVRN_2

95.48

94.69

95.52

92.85

91.77

87.83

86.48

84.36

89.84

91.55

THET_, _ 12, E1;'P2, THETIt"NFVR_I_R, -. •

FITRNE];'P1, FV'RNITCR,EFP2. _r,_R+tGFP12

98.70

98.35
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IHPI.;T

IHTI_ION I_

R 2

NI

H2

H3

N4

N5

k_3

_q

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

TI_-TR_wFt_l.S1_

TI-IETR'_wI_wSFPT,RVIIW

THE'TR'4.1_VIIwSFpT

'I'HETA'_.FVIIwSFPT,I_2.1_

'ITETA'4wI_VIIwSFPT

FVIIwSFPT, I_wEFP I*MVIl

l_wSl_, FVII2*I_

2*MVII,THETR2 *SPPTwIgJII

TI-IETR2.FVRw SPPT

17.72

47.65

27.65

44.67

45.35

39.18

42.87

33.97

45.@9

32.56

H6

N7

H8

149

M10

_6

k_

R9

W10

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

FVR.SFIrI',1_v'll2,I_IP

I_'R*SFFT, FVII*E]_PI

FVII*SPPT, I_IVR2wFVII

1_TII,S1rP'r

FVII*SFPT, PgR*I_P

InJIIwSPPT

FVIIwSFFT

FVII*SFP'I'

FVII*SFPT

52.95

64.41

39.12

47.13

27.43

49.71

25.19

32.16

34.@6

35.@9

COH1 THEI'A_.FgRwSFPT,FVRwVVIIwI@JII,FVII,_I*I'_II

In.q_*SFPT,FVIIwVVII,WJII2*SEPT

81.2@

84.79
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INPUT

N1

H,?.

N4

N-5

M1

M','2

145

Tp;:a_ _IIl- LONGITUDINAL COMP_I_

m

I_IOH

0.3 S_*SMI_

0.4 I_*_NR

0.5

0.6 S_,{_

O.7 1_,{_12

0.3 trvSl _

0.4 T_"

0.5 _*S_,THETAz*_

0.6 T_ _

0.7

(sc'xxc)

p2

12.53

19.45

9.81

10.20

IO.40

9.32

23.32

9.20

N6

N8

ll9

N10

W6

1,17

WB

I,;9

W10

•. 3 SFPC, GFP 12*SMPC

O.4 NOHE

0.5

0.6 NONE

0. ? GF'P12*EMP

0.3 FVRxlgv'R

0.4 t't'R

0.5 Vt'R

0,6 GF_I2 _

0.7

VI_IES F_wV'VII

VARII_ FgR*VVR, SI_

20.04

14.96

11.91

10.76

9. B5

9.10

46.48

44.44
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INPUT

N1

H2

N4

145

I11

W2

_3

M4

M5

N6

H'7

H8

N9

N10

IT?

1110

COH1

COH2

b"JR

I]¢rER.qCTIOR

0.4 I_2_S_

0.5 E_xSMPT

0.6 _2NMV_

0.2 1_

0.3 _2w_,

0.4 SMPT_NR

0.5 ffvl_2*FUll

•. 6 F'v'R_a'RN_P 2,

0.7 _"v'R_SlI_I "

O. 3 I_V'R-MUR

0.4 M_TR2*I_

0.5 FVRNE_P2wSI_

0.6 SI_2NMUR

0.7 P_I_NE_IP

0.3 11_82*E_

0.4 ML_'R_-_'VR

0.5 Sn_l'=_l_,_

0.6 F'-_ 2-I_P2

0.7 ]ff_2_SllFr

"I'HETA'awSIIP_Z_,TR,1_xI_2wI'_, wSIIPT:wI'_

SIIPT2w]'fJR,In_RwVVRwII_31

R 2

31.60

37.23

9.61

47.59

25.39

43.94

16.32

24.10

30.29

10.47

8.94

13.54

9.40

9.13

35.13

19.34

12.89

29.27

36.77

73.42

76.40
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Tt_E_I X}{V- TI_Vl_ C(_IVE S'IIB (SCYYC)

INF'b'T FVII

I_ION

R _

N1

)/2

N3

N4

I,;1

1,13

k14

0.3 SMPCNPNR

0.4 l:'VR2wEISP

0.5

0.6 l_2.IIUR

0.? NOI_

0.3 InJR2wVVII

0.4 In/ll2wI_lP

0.5 SNPC2wI_R

0.6 F"JRwWRNEFP2,_

0.? SPI:_NI'NR

33.39

32.99

42.31

26.24

43.86

21.13

25. ?5

18.63

N6

1t7

H8

N9

N10

146

k'7

liB

I,;9

1410

0.3 SMPC=.MUR

0.4 ]_P2wIgJR

0.5 FgRwI_P2

O.7 SMPC2.MVR,FgR2.]gJR

0.3 19JR2.E21P

0.4 ET'P2wIgJI_

0.5

0.6 MUR2*SMPC

0.7 19JIl_

11.57

9.03

9.8?

19.O7

32.50

14.58

32.85

35.99

CON1

CON2

TIIL_rA_wSMPCwffJR,FgR_

MVRW,FVR2*IgJR,]WJR2.S_

76.43

75.59
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II_UT

N1

H2

N3

N4

1t5

1,;1

lJ3

;,15

Tm.E  Vl- IS PLm (sc )

I]_rHIACI'IOH

RC_

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

O.7

F'dRwGi_ 12_3PIP, THETR '_

THET_

THETR "_3FP 12, SIIPS*I_PR

NONE

THET_t, F'JR-VVRwI_IP, THET_t%SMPS, FVRwI_'R

THETI_"*Fi,_, THETIt"xGFP 12
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i_. O_erview

nuneric.al simulations _rz[_z:ted show that certain asstueptions

about the statistical distribution of local ri_nuniformities in fiber

composites lead directly to quantifiable variations in material

properties. The advantages inherent in tI_e stochastic characterization

are ntmerous. The development of quality control and reliabilty

meastu'es for composites is crucial to their acceptance in aircraft

designs. The reduction in needed experfmental data achievable through

judicious simulation of the wide variety of available composite material

systems could significantly lo_er tbe costs of material selecti_ and

ac_eptanc_ testing. In the results of this study, the cor_idenoe

intervals calculated can be interpreted as the product of an

experimental program, specifically designed as an analog o£ the physical

processes _bich oocur in real materials.
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B. Histogram and DistribLrtions

Data oases 1, 2, and 3 demonstrate tI_e differs-noes between a

deterministic base case and random oases with narrow and vide dispersion

of input data about the base case.

In Fig. 30, it is apparent that the deterministic case 1 valt]e of

15750 ksi. for longitudinal modulus falls near the mean of the case 2

data. LJowe,_er, the case 3 sample appears to ha,_e a mean slightly lower

(approximately 15000 ksi. ). It should he noted that the size of the

interval over _hich the sample occm-s is noticeably larger in the widely

distrib-rted case 3 run.

Transverse modulus, (Fig. 31) demonstrates a higher mean value for

the wide distribtrtion than for the narrow, _hich is greater than the

deterministic value of 1065 ksi. reported in Table II. The increased

trans_._erse modulus is related to the added stiffness available in fibers

with high misaligrment relative to 1or_itudinal direction.

Shear modulus, (Fig. 32) is measurably changed by nonuni£ormities.

The deterministic value o£ 516 ksi is exceeded by the case 2 value o£

approximately 620 ksi, _hich is further exceeded by the case 3 value

near 900 ksi. Fiber misaligment has a signifioant effect in shear

modulus variation.

Poisson's ratios (Fig. 33, 34) show similar trends in looation of

sample means and relative dispersion of the sample for the data studied.

Poisson's ratios generally increase with fiber misalignent and voltme

fract ion changes.
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The coe£ficients of thermal expansion (Figs. 35, 36) £or the sample

studied refleot the longitudinal oontraotion o£ qraphite fibers _hen

heated. The longitudinal coefficient of thermal expansion for

AS-graphite fiber is -0.550 x 10-6/ F, _hile the transverse coeffioient

is 0.560 x 10-s/ F. The offset orientation of or_/stal lattice planes

in graphite fibers can explain this behavior. These _Ims, the £iber

misaligrment, and fiber volune ratio near 0.5 all oontribtrte to tbe

ooct=-rence of a negative longitudinal coefficient o£ thermal expansion

for the composite, llt higher fiber volune ratios, the _alues calculated

would be less than in the present case, because o£ the contolling £iber

behavior for high fiber voltme ratio.

longitudinal strengths (Fig. 38, 39) are significantly reduced

_/_en nonuniformities are present. _ deterministic case I value of 203

ksi. for tensile strength is compared to a mean near 160 ksi for case 2

and a mean near 130 for case 3. In compression, the deterministic value

of 185 ksi. compares to means near 100 ksi. and BO ksi. for tI_e narrow

and wide distributions, respeotively. The failure mode in compression

u-_ries in the random samples.

Trans_rse strengths (Fig. 40, 41) show sensitivity to the

variations asstmL=d. Misaligrments, voltme £raction nontmiformities, and

constituent strength _ariations all oontibuSe to reduction in the

strength values. Sub-ply shear failures occur, _hioh undermine the

already low transverse composite strengths.

In plane shear strength (Fig. 42) values decline from 10.O1 ksi.

£or case I to a mean near 8.0 ksi. £or case 2. However, case 3 shows a
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value of a man near 8.0 also. It appears that the added shear strength

due to fiber misaligrment is balanced by the r_-duced strength due to

_rariable fiber _x_Itme fraotion.

C. Confidence C_-ves

The effects of u_trious shape paraneters o£ fiber strength are sho_n

in Figs. 43 and 44. The higher _eibull distribution shape parameter o£

20 produces a narrow distribution of fiber strength values. The

composite that has few weaker fibers is expeoted to be.stronger, and

Fig. 43 demonstrates this for lonitudinal tensile strength. However,

compressi_ failure (Fig. 44) is a more complex phenomenon. In the

region of low fiber voltme ratio, the 'rule of mixtures' failt=-e

criteria £or a sobply can control the failure mode. At higher fiber

_01ume ratio, howe_er, oompressi_e failure can be initiated by

delamination, or by a shea_ £ail_'e in a sub-ply. The mixtcre of

failure modes in oompressive failure is not _ell understood, btrt can

explain the seeming inconsistency o£ the intersection of the ore-yes in

Fig. 44. At a £iber wl_me of 0.7, the weakest fibers (_ = 10) are in

the strongest composite, _hen strength is normlized with respect to

fiber compressi_ strength.

The effects of various shape parameters £or mtrix strengths are

studied in Figs. 45, 4G, and 47. _ransverse tensile and compressive

strengths show expected reductions for lo_=r matrix strer_ths. In-plane

shear strength sho_s lo_er dispersion at a large fiber _oltme of 0.7,

and also declines in general for higher fiber _lume.
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The fiber misalignment effects are studied in Figs. 48-57.

Lonqitudinal modulus (Fig. 48) shows narrow intervals and slight

r_ductions for greater misaligrment. Trans_mrse modulus (Fig. 49) and

in plane shear modulus (Fig. 50) are enhanced by fiber misaligrment.

Longitudinal tensile and compressive strengths are degraded by

misaligrment (Figs. 51, 52). Transverse tensile and compressive

strengths are enhanced (Figs. 53, 54). In-plane shear strength shews

total separation of confidence intervals between cm'ves with different

deqrees of misaligrment. Poisson's ratios (Figs. 56, 57) increase for

high fiber misalignment _ralves.

The fiber stiffness effects (Figs. 5B-G7) are very small for the

distribution paraneters studied.

D. Examination of Regression Mbdels

The r_g_ession models for therm_elastio properties demonstrate

resonably high predictive capability in the simple models assuned.

l*arginal impro_ments are achieved in expanding the models to include

higher order interaction terms. Further impro_._nent is gained by using

sample data from the wide range o£ _,olmue peroent values. The higher

multiple correlation coefficients of these models may be due to the

additional ir_ormation a_railable in the sample size of 100 that _s

used. _ nearly singular prediotor matrices Which oocur in the higher

order models indicate that terms must by selectively removed to

eliminate linearity het_een assumed predictm- terms. _ regression

results support the use of the simple models for thermoelastic
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properties, because improvements in prediotive capability in the higher

order models for the sane data are smell.

Strengths are not modeled well by the simple or the interaotion

models. The predictors obosen are average properties, _bereas the

strengths are based on the _eahest points in the material. Even the

unidireotional oases (H6-NIO, IJ6-W10) present data that the interaction

nodels ha_ considerable difficulty in aocomodatir_. Sonewbat greater

predictive _alue is gained bY using the ex1_nded data for strength model

prediction. Using fourth order algebraic functions, values of the

multiple correlation coeffioient square approaoh 85"/.for longitudinal

tensile strength. The other strengths generally have poorer results.



tractable, constituent based, probabilistic analysis procedure

for fiber composites has been developed using the ICON program as a

basis. Within the limitations of the mec.hanics of msterial model,

properties and strengths of a uariety of composite m_terial

con£ig_rations can be simulated.

This study qt_ntifies the therrnoelastic and strength properties of

a graphite/epoxy ply subject to assumed uncertainties for fiber

misaligrment_ constituent uoltme fractions_ and constituent properties.

The results show seueral aduantages of probabilistic cbaracteri_-ation of

this material. These include the identification of unforseen u-ariations

in composite material properties_ and the _echanical effects of local

nonuniformities. The relatiue importance of the u-_urious fabrication and

material u-_riables on composite properties is identified, _ tI-_

resulting behauior cIuanti£ied.

The ad_-antages of a probabilistic formulation of composite material
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properties o,Jer a deterministic one are mmerous. Comparison of the

results o£ this study with test data cx)uld re_al some souroes o£

preuiously tmacootmted scatter in the data. Expected _lue ranges could

be predicted for experimental results. Since the simulations provide

data that is analagous to experimental data at lower cost, laboratory

classification, material selection, and acceptance testing of composites

can be guided by the ir_£ormation made a_railable by these metIxxls.

_lthough the method presented provides results for only the basic

ply, extension of the simulation to include lamination angle variations

in a general layup is feasible. Since finite element material property

cards are generated, structural analysis of components with randomly

_raried properties defir_d at a mmber o£ points in the body can supply a

more realistic description of the rarxlom nature of structum'al response

due to material inbomogeneity.

The stochastic formulation o£ material properties is generally

recognized as one requirement of £ailtu-e theories for materials.

_tlthough the failm-e oriteria in the models used in this study are

conser_mti,_e, progressi,m failm_e o£ £iber composites could be modeled

by incorporating load redistribution and material property recalculation

in the uioinity of failed material.
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This appendix otrtlines the theories and equations in the IC_

program that are used in this project. In the first section on

composite micronechanics, the elastic and thermal properties of a

composite ply are defined with respect to its principal material axes.

The next section, devoted to laminate tI_ory, contains the

transformations and summations of ply properties used to arrive at

laminate properties. The last section contains a brief discussion of

the failure criteria.

I. Composite micronechanics

The tI0eory for calculation of the properties of a unidirectional

fiber composite ply based on the properties, voltnne fraotions, and

orientation of its constituents is known as composite micromeohanics.

In this seotion, the subscripts £, m, v, and ! represent £iber, matrix,

void, and laminate, respectively. The s}nmbolio notation and the

equations used are summariT_=d belong.

Uol_e fractions:

Longitudinal Modulus:

kf ÷ km + kv = I

Transverse lwEx_ulus:

Etli-- I*



El2 2 = El3 3 =

E
rn

S_u" _adul i :

Gll 2 =

G[2 3 =

Poisson's Ratios:

G
m

I - _ (1 -%/%12)
G

;N

i - _ (, - %/%3)

Vll 2 = Vll 3 = vm + kF(v£t 2 - vm)

156

v/2 3 = k£ v£2 3 + km [ Ull2 }2v E/2 2
m Eli I

Coe££icients o£ thermal expansion

'_Ztl * k_[(%EJE_li) - =zi,]
aft t =

i + %(_/Ez, t - l)

l , . k,.v.£rl t }
<:[122 = <zm(1 - ._£ ) " E£11 _" km(_ m _ El=,tt ) "£22k/

a33 = a12 2



I

157

2. Laminate Theory

This section describes the methods _hich are used to calculate the

elastic properties of laminates from the properties, orientation, and

distribution of individual laminae. The elastic properties are then

used to predict the response of the laminate to external loads. The

methods used to predict stresses in the laminae under application of

external loads are also described. Failure loads can be predicted by

using these methods; as described in a following section.

a. Genera Iizeal Hooke' s Law

The stresses acting at a point in a solid can be represented by the

stresses acting on the planes normal to the coordinate directions, or

equiualently, on the surfaces of an infinitesimal cube as sho_n in Fig.

B-1. The stresses (oij) on each face are resol_ed into three

components: one normal stress and t_o shearing stresses. The first

subscript refers to the direction normal to the plane in _hich the

stress acts and the second subscript to the direction in _hich the

stress acts. The stress components sho_n on the faces of the cube are

taken as positive and can be taken as the forces (per m_it area) exerted

by the material outside the cube upon the material inside. _I stress

oonponent is positi_ if it acts in the positive direction on a positive

£ace o£ the cube. Thus normal tensile stresses are positi_, and r_rmBl

compressive stresses are negative. )line stress components must be used

to define the state of stress at a point, namely Oli , 022 ' 033, 023,

o31 ' o12 ' o32 ' o13 ' and o21. There are nine corresponding strain



158

co,ponents, following the sane subscript conuention.

For bodies in _hich each strain coq_onent is a linear £unction o[

all six stress components, the generalized Idboke's Law can be expressed

oij = Eijkl Ekl

_here Eijkl is a £otrth order tensor o£ elastic constants. For nine

stress components and nine strain components, there must be 81 elastic

constants definircj Eijkl. Certain reductions in the number of

independent constants for an anisotropic body are due to symmetry

properties of the tensor Eijkl. By considering moment .equilibrium about

the center of the cube, it can be shown that at any point 023 = o32,

= o13 ' and a12 = o21. Thus, Eijkl ks symmetric with respect to the°31

first two indices. Second, because the strains are sym,etric (that is,

= Eji), Eijkl must be symmetric with respect to the second two

indices. This reduces the number of elastic constants to 36. Further

reduction to the final 21 elastic constants for a general anisotropic

material is accomplished by assuming the existence o£ a strain energy

density function, such that

with the property

u = u( ij )

@U

@E.. - °ij
zj

From the generalized Hooke's Law,

@U

_.. - Eijkl_kl
Ij

Partial di£Eerentiation with respect to Ekl yields
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_kl = EiJkl

Since the order o£ partial differentiation is immaterial,

°f I °f J
and the subscripts can be interohanged to yield

so that

Eijkl = Eklij

Thus the first pair o£ subscripts in Eijkl

second pair without any ohar_e in the ualues. The number of elastic

constants is thus r__ to 21.

b. Lamina Constittrti_ Relation

_ral simplifications to the generali_ l_ke's bwcan be mde

for the special case o£ a thin orthotropic material, _ich appm_ximates

a L_nidir_=ctior_l fiber composite lamirm. By considerir_ the inv-ariar_e

of elastic properties under c_x_rdinate tr_uns£ormation for planes of

symmetry, the tensor Eijkl ca_be r_d_1_=cl to the £ollowir_ nine

EIIII EI122 EI133

EI122 E2222 E2233

EI133 E2233 E3333

constants:

Eijkl =

O

O

It is now con_._nient to make the £ollo_ring notation changes:

can be inte_hanqed with the



The matrix C..
ij

°'11 = °1

o22 " o 2

o33 = 03

°23 = " 23= ='4

a13 = v13 = 0 5

°12 = _12 = u6

engineering strain compor_nts.

ell = E 1

e22 " _'2

e33 = E3

2e23 = Y23 = #4

2e13 = "/13 = #5

2e12 = "/12 = _6

The generalized form o£ Hooke's Law can now be _ritten

6

o. : I C .4. for i,j : i,...,G

j=l zJ J

is known as the sti££ness matrix, and e. are the
J

In matrix £orm l_ke's Law is _ritten

° 1

a 2

03

"r23

"r31

"r12

Cll C12 C13 0 • •

C12 C22 C23 0 • •

C13 C23 C33 0 0 •

• 0 0 Cq4 • •

• • • 0" C55 •

0 • • • • C68

42

4 3

v23

V31

YI2

_re the coordinate axes coincide with the syma_try axis o£ the

material. For laminae that are asstmed st_£iciently thin, the tSrotzjh

the thickr_ss stresses are zero. Thus 03 = 04 = 05 = 0, £or plane

stress. It is apparent that _4 = 45= •

13be stress strain relations for a thin tmidirectional lamina =re

_itten
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lolli01 .i1.1!°2 " _12 %2 • _2
•r12 0 0 2Q66 _ _12 j

1

usir[j the tensorial strain T YI2 instead of the er_jineering strain YI2"

The Q terms are known as reduced stiffnesses, i.e.

QI1 = Cli =

Q12 = c12 =

Q22 = C22 =

El

1 -- U12V21

v=:El

I - VI2V21

Q66 = T (eli - C12) = G12

_here El, E2, v12, v21, and 6]2 are the ply elastic constants, neasur_=¢[

t_th respect to the natural material system. It may be noted that only

four o£ these constants are independent.

stress- strain relation above sho_s that there is no coupling

between tensile and shear strains, as long as the applied stresses are

coincident with the principal material directions. However, coupling

appears _en a lamina is tested at arbitrary angles withrespect to the

principal material direotions. The general form of the stress-strain

relation for any anqular orientation o£ a lamina is considered next.

c. Sti£fness matrix transformations

R lamina is loaded alowq a coordinate system x-y oriented at sone
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angle e with respect to the principal material directions as sho_n in

Fig. B-2. Binoe stress ard strain are seoond oeder tensors, they are

trans£orned by

°*!02 =

T12

[T]

and

l e
e 2
]

T +_12

E x

: IT] +y
]

_here IT] is the transPormation matrix for plane stress and plane strain

trans£ormed by clock_se Potation about the (3, z) axes, given by

IT] =

cos28 sin28 2 sir_ cos#

sin=8 cos28 -2 sin8 cos8

-sin8 cos8 sine cos8 cos28 - sin28

Inversion arc[ substitution yields

TXy-

v_hioh is the stress strain relation £or a lamina re£erred to arbitrary

axes. For simplicity, the notation [ Q ] is introduced

[Q] = [T]-I[QI[T]

tdhere [Q] is called tI_ transEorned reduced stittness matrix.

Using the approach otctlined above, it is possible to obtain
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expressions Eor the elastic properties referred to the z-y coordinate

system.

d. Elastic properties of laminates

_I nun/_r of assumptions are made in laminate theory to obtain

tl_-_oretical predictions. These are:

1. the lamina are perfectly bonded and do not slip relative to
each other

2. the bond between the laminae is infinitesimally thin

3. the laminate has the properties of a thin sheet

These assumptions allow the laminate to be treated as a thin

elastic plate. The classical hypothesis of Kirchhoff is applied to

derive the strain distribution throughout the plate under external

forces. Because the laminate is composed of laminae oriented in

different directions with respect to each other, the stress-strain

equation for each laFer (k) is defined as

- 012 Q22 Q26

"rxy k QI6 Q26 Q66 k _ Yxy

Thus for a given strain distribution, the stress in each layer can he

determined. The strain at any point in a laminate ur_lergoing

deformation must he related to the displacements and ctrvatures of its

midplane. The discussion _ahich follov_s asstmes that the laminate is

thin. Eirchr_£f plate theory is used in this formulation.

The de£ormation of an arbitrary section of a laminate is shown in

Fig. B-3. It is assuned that lines straight and perpendicular to the
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midplane before deformation remain so after deformation. This is

equivalent to negleoting transverse sI_earing defor_mations. Comparirz3

Fig. B-4(b) with Fig. B-4(a), in _hioh the normls to tbe midpiarm

remain perpendicular after deformtion, it is seen that the upper and

lo_er stu_faoes of the plate must not shift their relative positions. It

is obvious that the resistance of a thin plate to s_h deformation is

large, mJ=h larger than its resistance to deformations perpendicular to

the midplane.

It is assumed that the point B at the midplane ur_ergoes

displacements u0, u0, and w0 along the x, y, and z axes, respeotively.

The displacement u in the x direction of a point C located on the normal

_BCD at a distance z from the midplane is given by

U = UO -- _

_here a is tbe slope of the midplane in the x direction,

aw0

_x

The last two equations can be used to obtain the displacement u of an

arbitrary point at a distance z from the midplane as

_w s

U = U 0 - Z _X

Similarly,

'U=VO-- Z C_

Since the strains normal to the midplane are neglected (plane

strain), tl_ displa_t w at any point is taken equal to the

displacement w 0 at the midplane. The strains in terms of displaoer_t u

and v are
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E
X

E
Y

o_ _ct o a2m,o

- ox - Ox z

c_ c_ o a"w o

-- _.,= _--- z _
c_, Ou o c_o

Yxy = _ + ax -Oy + ax

In terms of midplane strains and plate curvattres, the strains in a

landnate vary linearly tI_rough the thickness,

Y_

£0
X

Y

yo
xy'

_here midplane strains are qi_n by

.0 I
" I

I
|

.0

y I

,pO J

..y+

and the plate curvatures by

T.

kp+ z k

k .

0_.I o

ax

<Pvo

oy
O_o _o

N---÷ a-/-

_2U 0

a2Wo

ky = - _r-

a2Wo
k
xy OxOy

The stresses in any (k) lamina can be obtained by substituting the

previous equation into the stress strain equation

I°,jI+,,°,2°,+III+ I[kxIOy = QI2 Q22 _26 Ir°y + z ky

yo kxy_xy k q16 (_26 q66 k xy

d
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e. laminate Stiffness Matrix

Classical laminate theory provides a method of oaloulatinq the

resultant for_es and moments per m_it length acting on the laminate by

integrating the stresses acting in each lamina throtcjh the thickness (h)

of the laminate. Resultant forces are obtained by

I h/2
= 0 dz

Nx -h/2 x

I h/2
N = a dz

Y -h/2 Y

I h/2
N = _ dz

x7 -h/2 xy

The monent resultants are obtained by integration throccjh the thickness

of the oorresponding moments o£ stresses about the midplane:

I h/2 .Nx = -IV2 °s z dz

f h/2
= 0 Z dz

NY -h/2 Y

I h/2
= T Z dz

Mxy -h/2 xy

The traits o£ Nx, Ny, Nxy are f or_e per unit length and Mx, My, N F are

moment per umit length. The sign con_entions are slv_m in Fig. B-5.

Using the resultant force and moment relations, a system is defined

that is statically equivalent to the laminate stress system, but applied
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at the midplane. Thus, the external loading has been reduced to a

system that does not contain the laminate thickness or z coordinate

explicitly.

For a laminate consisting of n laminae (Fig. B-6), the resultant

£oroe-moment system acting at the midplane can be obtained by adding

integrals representing the contribution of each layer by

N x

Nxy

I h/2-h/2

0 X

%

_r

dz =

k:l hk-1
dz

T3o/ k

N I h/2-h/2

° x

%

7xy

z dz

k=l hk-I °x}ay z dz

7/ k

Using the expressions £or the stresses in the k-th lamina derived

earlier, and noting that the midplane strains and plate curvatures are

constant not only within the lamina, but £or all laminae, it is apparent

that they can be taken outside the integral sign. The stiE£ness matrix

[Q] is constant within a lamina so it also can be taken otrtside the

integration to gi_e

pNx]{{011012061i,{: ¢12 _22 %6 d_

Nxy k=l hk-I@is @26 @6s k

IIJl J01t qi2 qls hk z
+ Q12 Q22 Q26 dz ky

tk:, N-iQ16 Q26 Q66 k kxy

£o
X

_0
Y

yO
)ry
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"x 9l, 912 q,6 x

My = Q12 Q22 926 y

yo
Mx 7 k=l Q16 926 Q66 k xy

n QII
QI2 QIB hk

+ _ QI2 Q22 Q26 z2dz k7

k=_l - hk-I kx_fQL6 Q26 Q66 k

Three new mJtrioes, Rij , Bij , and Dij , are defined, _here

n

nij: _. (_ijlk(_ - _-l)
k=l

n
I

Bij - 2 _ ( Qia)k (hl_ - h_-I )

k=1

n
I

vii - a _. (O,j)k{h_- h:-,)
k=l

These new matrioes, I%, B, and D, simpliEy the resultant £oroe and mowent

relations, and are known as the extensional, oouplir_j, and bending

sti£Eness mtrioes, respectively. The total plate oonstittrtive equation

is then

[:]= [: :l [:°]
It ruby be recalled that in an orthotropic lamina with arbitrary

orientation the shear stress is coupled with the nernnl strain and the

normal stresses are coupled with the shear strain. In general, a

resultant shearing for'ce on a laminated plate produces midplane normal

strains in addition to the expected shearinq strain. Similarly, a
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resultant normal force will ind_ shear strains in addition to midplar_

normal strains.

nonzero oot_pling matrix B in the plate constitutive equation

explains the coupling between bending and extension o£ the laminated

plate. Thus, normal and shear forces at the midplane induce not only

midplane deformations, (and hence, midplar_ strains) but also twisting

and bending, producing plate c_n_mtm_es. Similarly, resultant bending

and twisting moments induce midplane strains.

£. Lamina stresses and strains

The aim of the analysis of a laminated composite is to determine

the stresses and strains in each o£ the laminae forming the laminate.

These stresses and strains are used with failure criteria to predict the

loads for £ailm_e initiation for a laminate. The failm_e criteria are

discussed in the section devoted specifically to that pin'pose.

The strains in a lamina caused by external loading are a £m_tion

of laminate midplane strains and plate cm_vatures, as previously

discussed. Once the lamina strains are known, lamina stresses can be

fotn_l using the lamina stress-strain law. Thus, the starting point for

calculating lamina stresses is the determination of laminate midplane

strains and plate om_vatt_-es in terms of the applied loading. The plate

constittrtive equation given previousl7 can be in,_erted to give the

midplar_ strains and plate c_ratm_es explicitly in terms of the

resultant external forces and monents. The result o£ the inversion

process is

_L



f°jIoBII.Ii  ]l.jk = C' D' H = B' D' H

_bere _l', B', and D' are simpli£ied forms o£ the inuersion process

•results, and are £tmctions o£ the /I, B, and D matrices o£ the original

form of the plate constitutive equation.

It is no_1 apparent that with these ecFsations, an analysis o£ a

laminate subjected to external £orces and moments can be c_nd_ted:

1. calculate midplane strains and plate cur_attsres

I:JI° II"J= B' D' M

2. calculate lamina stresses in global (x-y) system

°x1oy =

7xy k

JQ12 Q22 Q2_

Q16 Q26 Q6& k

E o
X

E o
Y

_o
xy

÷ z

k}(

ky

kxy

a calculate lamina stresses in nat_'al (longitur_inal
transverse to fiber) system.

°2 : [T]

'r12

strain _rariations in a lamina axe calculated in an analagous

manner. The stress-strain variation is compared with the allo_ble

stresses and strains in each lamina. Thus the load at _bich £ailm_e is

initiated in one o£ the lamina can be calculated, as long as a stre_th

criteria exists in terms o£ the lamina hat,a1 axis system.

£ormulation o£ lamina £ailure criteria is discussed in the next section.
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3, StrercJth Tlc=ocies

It is assu_-d that the strength ot a laminate must be related to

the str_engths ot the indiuidual laminae. A simple failure oriteria

consists of e_ral_ating the lamina strengths in their principal material

direotions subject to induced stresses or strains at the boundaries of

the lamina. In this context, it is assumed that the lamina and its

constituents behaue in a linear elastic uB_ner to failure. The strength

analysis described here assumes that the behauior of each lamina in an

arbitrary laminate is the same as the behavior observed in the nattmal

axis system _hen the lamina is part of any other laminate under the same

stresses or strains. In other _ords, it is assumed that the strength

criteria for a lamina in plane stress is ,mlid for any orientation of

the lamina in a laminate. In the ICI_N program, the lamina strengths are

calculated using the expressions given below.

Longitudinal tension

slllT = s_ (k_* k _rll)

Longitudinal compression:

longitudinal compr_essi_e strength must be comported on the basis

of three different criteria:

a. rule of miKtures

StllC = src (k_ * k_cll)
b. delamination

stiic = (t3 Sll 2 . smc)
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c. tiber microbucEling

S/11C =

r2 %

I - kr(l - %/%12)

3_ans_erse tension

st2zr = sT(Frcrma_o.)

Transuer se compression

S122C = SmC / DE_OM

Transfer se shear-

[(F t - I + G/GtI2)F2 GII 2 Sms]

S/12 = GmFi
F_

_'_ere F1 _ F2 are given by

J n

F1 = 4k£

J 4kvF 2 = 1 - nk m

The u-ariable I]E]_X_is introduced tot con,_=nience:

D]DK_= [1 - _(1 - E/E£22) ] _i ! + _P(_ - 1) + '/,(_P- 1) =

t_here _ is giuen by

E
m

F 1 - zr22[ 1 - "_c(' - z./zt221 ]

F 1 - 1
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The variable F/_'T is used to correlate the strengths of _ and Kevlar

fiber composites with the experimentally observed values. Since neither

of these fibers is used in this work, F/_'T takes the _lue unity.
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Fig. B.I- Components of Stress acting
on elemental unit cube.

Fig. B.2- Rotation of coordinates from I-2 to x-y.
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Fig. B.3- Bending geometry in the x-z plane.
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Fig. B.it-Shearing force deformations on straight cross section.
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Fig. B.5- Plate stress and moment resultants
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Fig. B.6 o Laminate index notation convention.
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